

LHC Beam Instrumentation & Commissioning

Tune Feedback Review

BNL - 4th-5th April 2005

Rhodri Jones (CERN – AB/BDI

Commissioning The LHC

(M. Lamont AB/OP – LHC Workshop, Jan 2005)

Commissioning the LHC with beam Stage One

- Establish colliding beams as quickly as possible
- Safely
- Without compromising further progress

Take two moderate intensity multi-bunch beams to high energy and collide them.

Beam Types for Commissioning

- Pilot Beam:
 - \rightarrow Single bunch, 5 to 10 x 10⁹ protons
 - →Possibly reduced emittance
- Intermediate single:
 - \rightarrow 3 to 4 x 10¹⁰ ppb
- 4 bunches etc. pushing towards...
- 43 bunches
 - \rightarrow 3 to 4 x 10¹⁰ ppb

First turn Commission injection region Instrumentation Threading

PILOT

RING 1 RING2

Establish circulating beam

· Circulating low intensity beam

PILOT

RING 1 RING2

450 GeV Initial

- Polarities and aperture checked.
- Basic optics checks performed.
- First pass commissioning of BI performed.
- Phase 1 of machine protection system commissioning performed. .
- Beam Dump commissioned with beam

SINGLE INTERMEDIATE

RING 1 RING2

450 GeV Detailed

- Well-adjusted beam parameters, detailed optics checks
- Fully functioning beam instrumentation.
- Machine protection as required for ramp
- RF beam control loops operational and adjusted

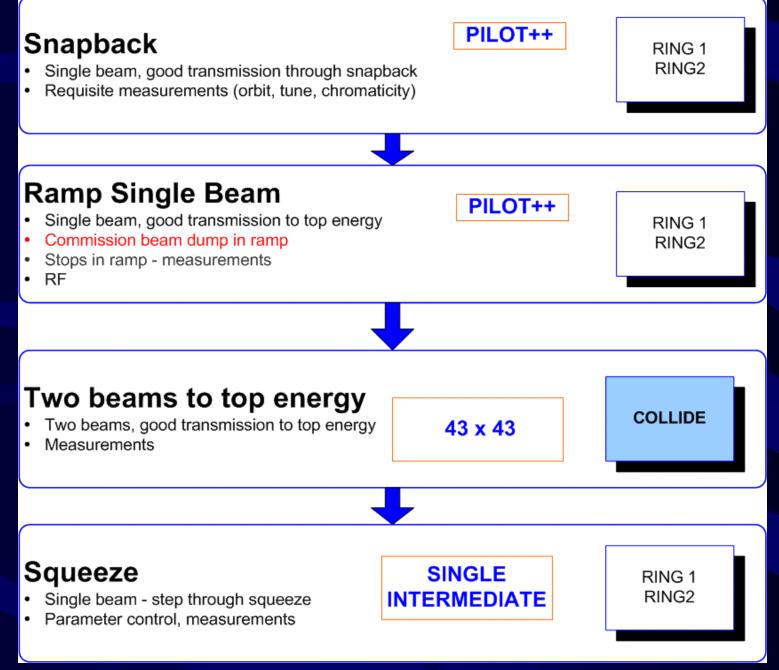
SINGLE INTERMEDIATE

++

RING 1 RING2

Two beam operation

- 2 beams, well-adjusted beam parameters,
- beam instrumentation, cross talk etc.


Switch to nominal

- 2 beams, well-adjusted beam parameters,
- beam instrumentation, cross talk etc.

LHC Instrumentation & Commissioning - Rhodri Jones (CERN - AB/BDI)

LHC Instrumentation & Commissioning - Rhodri Jones (CERN - AB/BDI)

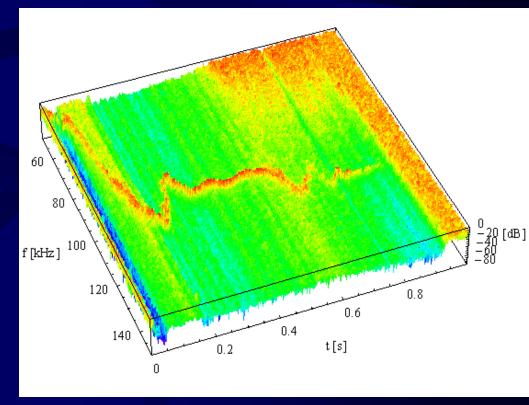
At each phase:

- Equipment commissioning with beam
- Instrumentation commissioning
- Checks with beam
 - →BPM Polarity, corrector polarity, BPM response
- Machine protection
- Beam measurements
 - →beam parameter adjustment, energy, linear optics checks, aperture etc. etc.

Instrumentation – the essentials

(H. Schmickler AB/BDI – LHC Workshop, Jan 2005)

- First turn i.e. immediately
 - → Screens, BPMs, fast BCT, BLMs
- Circulating beams at 450 GeV
 - → BPMs, DC BCT & lifetime, BLMs
 - → Tune & chromaticity
 - → Emittance: wire scanners...
- Snapback and Ramp
 - → Continuous Tune & Chromaticity
 - \rightarrow Orbit
 - → BLMs to beam interlock controller etc.


Beam Commissioning: Tune measurement

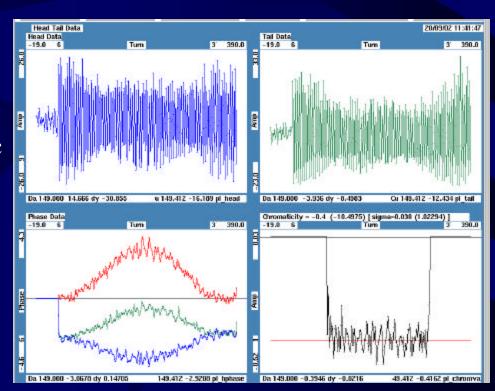
Day 1 - Time resolved measurements:

- sequence of kick stimuli (2Hz) with FFT based tune measurements
- provides more information than a PLL trace and will be available from the start.

PLL tune tracking:

- The PLL will need at least a few weeks to be set up
- US-LARP collaboration ongoing.
- Difficult to say when first system will be operational. Compatibility with transverse damping so far unclear.

Beam Commissioning: Chromaticity

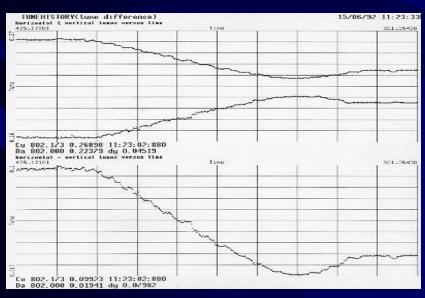

Day 1 - Head-Tail analysis

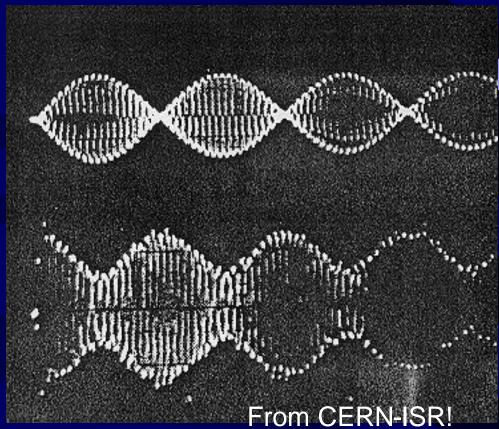
- sequence of kick stimuli (2Hz) with head-tail based Q' measurements
- requires beam synchronous timing
- betatron oscillation has to last at least 50% of a synchrotron period.

Alternative: difference in tune for two discrete settings of beam momentum

PLL tune tracking:

• Chromaticity tracking via periodic momentum modulation will be available as soon as the PLL works.





Beam Commissioning: Chromaticity

Day 1

- Again kick as beam stimulus.
- Coupling (in particular if large) from cross talk to other plane

Day N

with PLL available: closest tune approach measurement

Transverse Diagnostics Commissioning

- Clear two step approach:
 - 1) Day 1 with kicked beams and classical motion analysis
 - 2) Day N with PLL and more powerful time resolved methods
- This puts a high pressure on getting dedicated machine time in order to commission the PLL early.
- As long as emittance growth is not the major concern, the problems will be:
 - → automation of parameter settings depending on beam conditions
 - filters, gain switches, timings etc
 - phase scans in order to determine the correct PLL lock conditions
- For operational beams the additional problems will be:
 - → lowering the excitation level to an insignificant level
 - → coping with coupling
 - → achieving compatibility with resistive transverse damping

Tune Feedback Commissioning Three step approach:

1) Day N get PLL working as a tune tracker – this involves:

- → Setting-up & debugging the acquisition system with beam
- → Automation of parameter settings
- → Phase scans to determine correct PLL lock conditions
- → Investigating the influence of 60Hz components
- → Investigating the effects of coupling
 - Can we stay locked in the presence of coupling?
 - Can we measure the coupling in order to stay locked?
- → commissioning chromaticity measurement using the PLL

2) Day N+ close the loop and feedback on the tunes

- → Test of the complete feedback chain
- → Determine the best loop parameters
- → Requires robust PLL
 - may require coupling to be understood & corrected

3) Day N++ close the loop and feedback on chromaticity & coupling

- → Test of the complete feedback chain
- → Determine the best loop parameters

Tune Feedback Commissioning Timescales

2005/2006

Test of complete LHC prototype acquisition chain at RHIC

2006

- Implement prototype LHC PLL system in the SPS
- Possible test of tune feedback in the SPS

2007

- Test of tune feedback in the SPS
- Installation & hardware commissioning of the LHC system
- Commission the LHC PLL system with beam
- Commission chromaticity & coupling measurement using the PLL

2008

- Commission tune feedback in the LHC
- Commission chromaticity & coupling feedback in the LHC